A Functional EM Algorithm for Mixing Density Estimation via Nonparametric Penalized Likelihood Maximization

نویسندگان

  • Lei LIU
  • Yu ZHU
  • Y. ZHU
چکیده

When the true mixing density is known to be continuous, the maximum likelihood estimate of the mixing density does not provide a satisfying answer due to its degeneracy. Estimation of mixing densities is a well-known ill-posed indirect problem. In this article, we propose to estimate the mixing density by maximizing a penalized likelihood and call the resulting estimate the nonparametric maximum penalized likelihood estimate (NPMPLE). Using theory and methods from the calculus of variations and differential equations, a new functional EM algorithm is derived for computing the NPMPLE of the mixing density. In the algorithm, maximizers in M-steps are found by solving an ordinary differential equation with boundary conditions numerically. Simulation studies show the algorithm outperforms other existing methods such as the popular EMS algorithm. Some theoretical properties of the NPMPLE and the algorithm are also discussed. Computer code used in this article is available online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Functional EM Algorithm for Mixing Density Estimation via Nonparameteric Penalized Likelihood Maximization

When the true mixing distribution is known to be continuous, the nonparametric maximum likelihood estimate of the mixing distribution cannot provide a satisfying answer due to its degeneracy. The estimation of mixing densities is an ill-posed indirect problem. In this article, we propose to estimate the mixing density by maximizing a penalized likelihood and call the resulting estimate the nonp...

متن کامل

The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways

The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...

متن کامل

A Nonparametric EM algorithm for Multiscale Hawkes Processes

Estimating the conditional intensity of a self-exciting point process is particularly challenging when both exogenous and endogenous effects play a role in clustering. We propose maximum penalized likelihood estimation as a method for simultaneously estimating the background rate and the triggering density of Hawkes process intensities that vary over multiple time scales. We compare the accurac...

متن کامل

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways

The performance of many traffic control strategies depends on how much the traffic flow models are accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive loop d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008